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ABSTRACT

Aided target detection in infrared data has proven an important area of investigation for both mili-
tary and civilian applications. While target detection at the object or pixel-level has been explored
extensively, existing approaches require precisely-annotated data which is often expensive or diffi-
cult to obtain. Leveraging advancements in weakly supervised semantic segmentation, this paper
explores the feasibility of learning a pixel-level classification scheme given only image-level label
information. Specifically, we investigate the use of class activation maps to inform feature selection
for binary, pixel-level classification tasks. Results are given on four infrared aided target recognition
datasets of varying difficulty. Results are quantitatively evaluated using common approaches in the
literature.

Keywords: target detection, weakly supervised semantic segmentation, weak learning, multiple
instance learning, imprecise labels, infrared, feature selection, class activation map

1. INTRODUCTION

Target detection is a paramount area of research in the field of remote sensing which aims to lo-
cate an object or region of interest while suppressing unrelated objects and information.1,2 Binary
target detection can be formulated as a two-class classification problem where samples belonging
to a class of interest are discriminated from a background, or non-target, distribution.1–3 Common
applications require targets to be classified at the pixel-level, and traditional supervised learning
approaches require extensive amounts of highly precise, pixel-level groundtruth to guide algorithmic
training. However, acquiring large quantities of accurately labeled training data can be expensive
both in terms of time and resources, and in some cases, may even be infeasible to obtain.4,5 Be-
cause of these limitations, achieving pixel-level classification, or semantic segmentation, in realistic
environments can be challenging.6

This problem has motivated the exploration of learning from alternative types of labels, deemed
weak, imprecise or uncertain.7–14 As such, approaches for weakly supervised semantic segmentation
(WSSS) have been explored using bounding boxes,15,16 scribbles,17–22 points,23–26 and image-level16

labels that are less informative than pixel-level labels, but are readily available in large quantities or
easily obtained due to their low annotation costs. Figure 1 demonstrates different types of imprecise
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Spot Label Scribble Label Imprecise Box Label Image Label

Figure 1: Examples of weakly-labeled infrared imagery. The images demonstrate various forms of
weak groundtruth for a pickup truck captured with a mid-wave infrared camera. The images show
spot, scribble, imprecise bounding-box, and image-level labels, respectively.

labels. This work considers the case of learning pixel-level segmentations from image-level labels.
Approaches in this line of research often incorporate additional evidence to infer location and shape
information which is absent in the label information.6 A popular localization mechanism is the
Class Activation Map (CAM),27 which estimates regions in an input image which contribute to the
estimated class label by analyzing the activations of hidden units in the output layers of a deep
convolutional neural network (DCNN).

This paper investigates pixel-level target classification in infrared data from image-level labels.
The contributions of this paper are threefold:

• Classifiers were trained to predict whether or not infrared images contained target pixels (i.e.
bag-level classification). Experiments were conducted on four datasets of varying difficulty,
as well as varying levels of label imprecision.

• WSSS was achieved by thresholding CAMs estimated in various hidden layers of the trained
image-level classification network.

• Experiments using CAMs as pseudo-groundtruth for activation map feature selection were
conducted and tested in pixel-level classification.

To provide insight into future directions for WSSS in infrared imagery, this work utilized post-
hoc attention under the paradigm of multiple instance learning to explore WSSS. Specifically, this
work shows that a DCNN is capable of distinguishing between positive and negative bags, leading
to the presumption that features which can discriminate instance (pixel) labels can be abstracted
from the information contained in the model. Class activation maps were explored as a baseline
for performing WSSS from the learned features of the trained bag-level classifiers. Finally, feature
reduction/extraction from the trained models was explored as a way to abstract instance-level
classification information from the bag-level classification models. Each method was applied on
hold-out test data to evaluate the effectiveness of the segmentation techniques. Quantitative results
are given as overall classification accuracy for bag-level classification and mean intersection-over-
union (mIoU) for semantic segmentation.

An overview of the investigated approach is shown in Figure 2. The training method is performed
in three stages, each of which adheres to MIL constraints. Stage (a) trains a bag-level classification
network. Stage (b) estimates a class activation map for the inferred bag-level label. Stage (c)
up-samples and concatenates the activation feature maps from the bag-level classification network,
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Figure 2: Overview of the investigated MIL instance-classification training approach. The method
is performed in three stages. Stage (a) trains a bag-level classification network. Stage (b) estimates
a class activation map for the inferred bag-level label for a training image. Stage (c) up-samples and
concatenates the activation feature maps from the bag-level classification network. This provides
a feature vector at every pixel/instance. The corresponding class activation map from Stage (b)
is used as a pseudo-label to allow for feature ranking. Post-ranking, an instance-level classifier is
trained, using the CAM as groundtruth. All three training stages maintain MIL constraints.

which provides a feature vector at every pixel/instance. The corresponding class activation map
from Stage (b) is used as a pseudo-label and feature ranking is performed. An instance-level classifier
is trained using the ranked features and corresponding CAM as groundtruth. In this manner, an
instance-level classifier is estimated from bag-level labels. Each stage of the approach is described
in detail in Section 3.

The rest of this paper is organized as follows. Section 2 describes the mid-wave infrared data
imagery used in this paper. Section 3 describes the bag-level classifier training as well as the process
used for CAM estimation and MIL feature selection. Next, Section 4 details the aforementioned
experiments and summarizes results. Final thoughts and conclusions are given in Section 5.

2. DESCRIPTION OF DATA

The data used in this work consists of mid-wave infrared (MWIR) video captures of both moving
and non-moving civilian and military vehicles at various ranges and aspects. Each video can be
considered as a collection of frames taken at the corresponding sensor’s sampling rate. Datasets
were each processed and broken into subsets amenable for learning with MIL. As shown in Figure
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Figure 3: Frame pre-processing and bag sampling pipeline.

3, each gray-scale image frame, I ∈ R+(510×720), was clipped at 0.5% and 98%. The images then
underwent normalization by median absolute deviation (MAD), defined as

MAD = median(|I −median(I)|), (1)

and were scaled to [0, 255]. Images in the datasets were originally annotated with bounding boxes.
In order to analyze the data under MIL, sub-images were extracted to create sets of bags (see Section
3.1), where positive bags each contained at least one pixel on target and negative bags contained
only background pixels. Following these constraints, sub-images were sampled such that negative
bags had no overlap with target bounding boxes and positive bags had at least 25% overlap with a
target bounding box. Sub-samples were taken in scalar values of (51× 121), which corresponds to
the largest target present in the datasets. All sub-sampled images were up-sampled with bilinear
interpolation to the original frame size of (510× 720).

As can be seen in Figure 4, bags were constructed to represent various levels of groundtruth
imprecision. This was done by changing the ratio of background to target pixels in the sub-
sampled image chip. Essentially, canonical bags were constructed from the provided bounding box
annotations where the majority of pixels fall target. Ratios α = 1-3 increase the sample size as a
scalar value of (51× 121). As the scalar value increases, the ratio of background to target pixels in
the image also increases. Training and testing on bags consisting of different ratios of target and
non-target instances provides a way to capture the ability of a model to abstract pixel-level label
information from the bags and corresponding bag-level labels.

3. METHODOLOGY

In this work, the multiple instance learning WSSS problem is explored. First, a deep convolutional
neural network is trained to predict whether an image is a positive or negative bag. After successful
training, class activation maps are computed from the features of the network. The CAMs provide
weak target localization information which is used to inform pixel-level classification. This chapter
provides technical details of the methods explored in this work. An overview of multiple instance
learning is provided along with details of the bag classification network. A summary of class
activation maps is given and details of a novel feature selection approach using CAM pseudo-
groundtruth are discussed.
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Figure 4: Demonstration of positive bag sampling for various levels of imprecision. In the top
row, green boxes represent the bounding box annotation, while blue boxes represent the frame sub-
sample capture. Annotation bounding boxes are represented in red in the bottom row of images.
Canonical bags are constructed from the provided bounding box annotations and the majority of
pixels fall on target. Ratios 1-3 increase the sample size as a scalar value of (51 × 121). As the
scalar value increases, the ratio of background to target pixels in the image also increases.

3.1 Multiple Instance Learning

Multiple Instance Learning (MIL) was originally proposed by Dietterich28 as a method to handle
inherent observation difficulties associated with drug activity prediction. This problem, among
others, fits well into the framework of MIL where training labels are associated with sets of data
points, called bags instead of individual samples, or instances. Under the standard MIL assumption,
a bag is given a “positive” label if it is known that at least one sample in the set represents pure
or partial target. Alternatively, a bag is labeled as “negative” if does not contain any positive
instances.13 Let X = [x1, . . . ,xN ] ∈ RD×N be training data where D is the dimensionality of an
instance, xn, and N is the total number of training instances. The data is grouped into K bags,
B = {B1, . . . ,BK}, with associated binary bag-level labels, L = {L1, . . . , LK} where

Lk =

{
+1, ∃xkn ∈ B+

k 3 lkn = +1

0, lkn = −1 ∀xkn ∈ B−k
, (2)

xkn denotes the nth instance in positive bag B+
k or negative bag B−k , and lkn ∈ {0,+1} denotes

the instance-level label on instance xkn. Figure 5 demonstrates the concept of MIL bags. MIL
has recently been explored for target detection using a variety of remote sensing modalities.3,29–34

The objective of learning under MIL in this work is, given only bag-level label information, to fit a
model which can perform bag (image) and instance (pixel)-level classification.

3.2 Bag-Level Classification

In this work, a bag represents an image B , I, where I ∈ Ru×v×w. Thus, a bag is a collection of
feature vectors (instances) at every pixel spatial location, (u, v). Each training image Ik is paired
with a label Lk ∈ {0, 1}, where Ln = 0 is assigned if every pixel in the image belongs to the
background class (i.e. lkn = 0∀xkn ∈ B−k ), and Ln = 1 if at least one pixel in the image belongs to
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Figure 5: Illustration of example bags under the multiple instance learning framework. Red “plus
signs” denote positive instances and blue “negative signs” represent negative instances. The two
bags on the top row are labeled “negative” because they only contain negative instances. The three
bags on the bottom row are “positive” because they each contain at least one positive instance.

the target class (∃xkn ∈ B+
k 3 lkn = 1). While each bag is given a label according to the standard

MIL assumption, the labels of individual instances in positive training bags are unknown.

A binary classification network was trained on the images with image-level labels (Stage (a),
Figure 2). Consider one-hot encoded labels Lk = [Lk0, Lk1] where Lk = [0, 1] for a positive bag
and Lk = [1, 0] for a negative bag. The goal of the binary classification network is to estimate the
probability p(Bk,θ) = [p0(Bk,θ), p1(Bk,θ)] that a bag belongs to the target or background class.
A softmax output is applied to the output of the network such that p0(Bk,θ), p1(Bk,θ) ≥ 0 and
p0(Bk,θ) + p1(Bk,θ) = 1. Cross-entropy loss, Lcls(B;θ,L), was used on the image classification
network to minimize the error between each predicted image-level label and the true class:

min
θ
Lcls(B;θ,L) =

1

K

K∑
k=1

2∑
i=1

Lki log pibag(Bk;θ) (3)

where pibag(Bk;θ) is the ith element of the softmax output layer for the bag classification network
parameterized by θ.

3.3 Class Activation Mapping

A Class Activation Map (CAM)35 is a post-hoc method for visualizing attention in convolutional
neural networks (CNN) which has been used extensively in the WSSS literature.36–49 Essentially,
a CAM for a particular class label indicates the discriminative image regions used by the CNN to
identify the category. As shown if Figure 6, the neural network structure for a CAM commonly
consists of stacked convolutional layers, a global pooling layer, a fully connected layer (fc), and the
output layer. Formally, let f denote the image classifier parameterized by θ. For a given image
I ∈ Ru×v×w, the predicted score yc of the target category c before input to the softmax is given by

yc = f c(I,θ). (4)

Let Ak ∈ Ri×j be the k-th feature map in the final convolutional layer. The input to the softmax
is the sum of the activations scaled by their relative importances, αc

k, toward each class label. The
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Figure 6: Class activation map computation. In the standard CAM, importance values are given
as the weights between global average pooled feature maps and their weights toward a particular
class in the fully-connected layer.

localization map for CAM, Lc
CAM, for class c is obtained by applying a ReLU operation on the

summation to remove negative responses

Lc
CAM = ReLU

(∑
k

αc
kA

k

)
. (5)

For the standard CAM, the importance weights, αc
k = wc

k, are given as the weights in the fully
connected layer contributing to a particular class score. Activation maps are up-sampled using
bilinear interpolation to the match the input and each element in the heatmap is scaled to [0, 1].

Grad-CAM 50 and Grad-CAM++51 generalize CAM35 by allowing for computation in any CNN
architecture. In these approaches, activation maps are weighted by their average gradients. The
gradient of prediction score yc with respect to local spatial location (i, j) in feature map Ak is given
as

gkcij =
∂yc

∂Ak
ij

. (6)

Grad-CAM obtains the channel-wise importance weighting by averaging the gradients over all
locations in the feature map as

αc
k =

1

N

∑
i

∑
j

gkcij , (7)

where N is the number of spatial locations in feature map Ak. Grad-CAM++ is essentially the
same as Grad-CAM, except that it uses second order gradient information to determine the feature
importance weights. As a result, Grad-CAM++ has been shown to produce better object localiza-
tion ability when multiple instances occur in the same image. Both Grad-CAM and Grad-CAM++
assign a single weight for each spatial location in an activation feature map. However, in shallow
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layers, the variances of activation maps are often large, meaning a global weight cannot adequately
represent the importance of different spatial locations toward particular categories.

LayerCAM 52 addresses this problem by assigning an importance weight to each spatial location
in a feature map. Formally, the importance weight for spatial location (i, j) in the k-th feature map
can be written as

αkc
ij = ReLU(gkcij ). (8)

To obtain the class activation map for a particular layer, LayerCAM multiplies the activation value
of each location by its importance weight

Âkc
ij = αkc

ij ·Akc
ij . (9)

As with alternative approaches, the results Âk, are combined linearly along the channel dimension
to obtain the final CAM

Lc
LayerCAM = ReLU

(∑
k

Âk

)
. (10)

LayerCAM has been shown to generate reliable class activation maps in shallow layers, which
capture fine-grained localization information.

Score-CAM 53 rids itself of dependence on gradients by finding importance weights of activation
maps by a forward passing score in the network. Essentially, each activation map is used as a mask
on the input image and the importance weights for the c classes are given as the output scores for
the masked image.

Ablation-CAM 54 attempts to remedy the problem of diminishing gradients by avoiding them
entirely. In their work, Desai et al.54 showed that removing certain feature map units had a severe
impact on the accuracy of certain classes. As a result, Ablation-CAM considers the performance
drop to be an indicator of feature importance. The importance weight for activation feature map,
Ak, is computed as the performance drop between the output score yc, and the output score with
the k-th activation map removed, denoted as yck. The importance weights are formally given as

αc
k =

yc − yck
yc

. (11)

Similarly to Score-CAM, Ablation-CAM uses forward class activation information to visualize atten-
tion in convolutional neural networks. These approaches have the advantage of using the inherent
flow through a neural network, instead of relying on gradients which lose spatial information through
pooling and magnitude information through activation functions (i.e. ReLU).

Eigen-CAM 55 is a class non-discriminative approach for identifying salience information in the
input space. Similarly to Score-CAM and Ablation-CAM, Eigen-CAM does not rely on gradients,
but obtains a saliency map by projecting the input image onto the first eigenvector of the convolu-
tional feature map weights at a particular layer. This approach has the benefit of providing salience
information irrespective of model accuracy. Additionally, it has been shown that Eigen-CAM is
more robust to adversarial noise than alternative CAM approaches in the literature.

In this work, CAMs were computed from the trained bag-level classifier (Stage (b), (Figure 2)).
The CAMs were binarized across a range of confidence thresholds to investigate the ability of the

Proc. of SPIE Vol. 12096  1209603-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 16 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



network to inherently infer pixel-level semantics from image-level labels. Additionally, CAMs were
explored as pseudo-labels for feature selection. While all methods were trained using imprecise
labels, they were tested on a small subset of test data with accompanying pixel-level groundtruth.

3.4 Feature Selection from CAM Pseudo-groundtruth

Feature selection is a popular and straightforward approach for dimensionality reduction. Feature
selection techniques define a smaller feature set by selecting a subset of the original features. There
are three primary categories of feature selection techniques: filtering acts as a preprocessing step
to construct an independent feature set before a classifier is constructed, wrapper techniques use
the performance of the classifier as a fitness function on the set of features, and embedded methods
include feature selection as part of the classifier’s optimization objective (i.e. sparsity constraints).56

Feature ranking is an appealing filtering approach for its speed and simplicity. Essentially, feature
ranking approaches evaluate a fitness function on each feature, independently. The features are
then sorted by their scores and the top K ′ are selected. Algorithm 1 depicts the feature ranking
scheme used in this work to select activation maps from the trained bag-level classifier for instance-
level classification. All activation maps are extracted from the trained classification network and
up-sampled to the input dimensionality (Stage (c), Figure 2). The concatenation of all up-sampled
activations provides a feature set which can be exploited for pixel-level classification. Let A be the
set of up-sampled activations for an input image and let LCAM be the set of corresponding class
activation maps computed on the predicted image-level labels. The implemented feature ranking
approach uses mIoU as the fitness function between a single activation map and the inferred class
activation map. The approach maintains weak learning by setting the pseudo pixel-level labels as
the class activation maps computed for the inferred bag label. There are implicit assumptions that
the predicted bag labels are correct, and that the computed CAMs adequately define the targets at
the pixel-level. Once features have been selected, a logistic regression classifier is trained to predict
thresholded CAM pseudo-labels. The classification model with reduced feature set is then tested
on the hold-out test data to evaluate the ability of the model trained on weak labels to compute
accurate pixel-level segmentations.

A trade-off of using feature ranking is that, if multiple features are needed to discover a cor-
relation, they will not be considered since each feature is evaluated independently. An alternative
would be to use a method that selects features sequentially, such as forward or backward feature
selection where features are added to the set one at a time depending on their fitness with the
current set of features. Compared to feature ranking, which has a linear run time (K ′), a forward
feature selection tends to be polynomial in the number of features since each new feature added
requires re-evaluation of the scoring function for every feature not already included in the set.

Algorithm 1 Feature Ranking

Input: Dataset X = {X1, . . . ,XN},LCAM = {LCAM1
, . . . ,LCAMK

}, scoring/fitness function S,
feature set A = {A1, . . . ,AK}, new dimensionality K ′

1: V ← [ ]
2: for feature Ak in feature set A do
3: V [k]← (S(X,LCAM,Ak),Ak)
4: end for
5: V ← SortDecreasing(V )
6: return [Ak for Ak in V [1, . . . ,K ′]]
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4. EXPERIMENTS AND RESULTS

4.1 Data Description

Experiments were conducted on MWIR data taken from four distinct collection sites. The publicly-
available DSIAC MS-003-DB Algorithm Development Database57 is considered the easiest in the
group, because targets in this set have very little occlusion and only collections from nighttime
were used. It was anticipated that data from this site would provide the best bag-level performance
and would be a good indicator of the possibility of learning pixel-level features from bag-level
classification models. Sites “Y”, “H”, and “B” followed in assumed levels of difficulty. This was
inferred from the targets included in the datasets, the levels of occlusion, and the various aspects
to which the targets were visible. Also these three datasets included MWIR data collected at both
day and night. The total numbers of image frames in each dataset are shown in Table 2. Only
image-level labels were given to training and validation sets. Test sets were given hand-segmented
pixel-level annotations for evaluating WSSS. Each split of the data contained equal numbers of
positive/negative bags. Bag-level prediction was investigated for all four datasets, including all
levels of bag imprecision (i.e. canonical/ratio 0 - ratio 3). To determine the role of positive bag
construction (i.e. number of target versus background pixels) in inference, a bag-level classifier was
also trained for each level of data imprecision for site “H”. Pixel-level segmentation was evaluated
on the DSIAC dataset only.

Table 1: Dataset Breakdown
Dataset Breakdown

Dataset Train Valid Test

D Total 2800 548 1674

D Ratio 0 92 16 54
D Ratio 1 906 174 540
D Ratio 2 920 160 540
D Ratio 3 882 198 540

Y Total 359138 63017 147043

Y Ratio 0 35914 6320 14686
Y Ratio 1 107742 18945 44073
Y Ratio 2 107742 18868 44149
Y Ratio 3 107740 18883 44135

H Total 76660 29405 68614

H Ratio 0 7666 2890 6912
H Ratio 1 22998 8740 20666
H Ratio 2 22998 8933 20473
H Ratio 3 22998 8842 20563

B Total 143065 7589 17708

B Ratio 0 35766 1873 4451
B Ratio 1 35766 1882 4442
B Ratio 2 35766 1930 4394
B Ratio 3 35766 1904 4420

4.2 Bag-level Classification

Bag-level classification was performed on all four datasets, individually. Each set contained data
across all four investigated levels of bag imprecision. Additionally, each level of bag imprecision was
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investigated with it’s own classifier for set “H”. The model used was a ResNet1858 backbone (con-
sisting of four convolutional blocks) with global average pooling (GAP) and a single fully-connected
layer going to a softmax over two outputs. Following best-practices, models were initialized with
parameters pre-trained on ImageNet.59 Each model was trained to optimize Equation 3 for 1000
epochs and parameters were updated with stochastic gradient descent (SGD). Table 2 reports the
overall accuracy for the single best model for each dataset (selected from the validation data) on
the hold-out test set, as well as the best epoch on the validation set. As can be observed, all models
achieved over 93% accuracy for bag-level classification, even on the “expert-designated difficult”
datasets. Additionally, the model trained across all levels of bag imprecision for site “H” performed,
on average, better than each individual model for a given level of bag imprecision. While counter-
intuitive, an explanation for the combined model outperforming alternatives might be that the
combination servers as a type of data augmentation, which has been shown to be beneficial to CNN
training many times in the literature. Given that each CNN was able to effectively infer bag-level
labels, (i.e. use the collection of instances to predict the label of the group), it was assumed that
the models contained information about the labels of individual pixels which could be extracted
from the networks.

Table 2: Overall test accuracy and best validation epoch for bag-level classification models.
Bag-level Classification Performance

Dataset Accuracy Best Epoch

D Total 1.000 100

Y Total 0.974 65

H Total 0.950 92

B Total 0.960 69

H Ratio 0 0.943 70

H Ratio 1 0.953 25

H Ratio 2 0.948 40

H Ratio 3 0.930 45

4.3 Comparison of WSSS with Class Activation Maps

Following the bag-level classification experiments, an alternative bag-level classifier was trained for
the DSIAC dataset across all levels of bag imprecision. A VGG16 backbone was trained in the same
manner outlined in Section 4.2. As with the ResNet backbone, the VGG model achieved 100% bag-
level classification performance on the hold-out test set. The VGG model had five convolutional
blocks which proceeded pooling and ReLU activations. Each block of convolutional feature maps is
referred to as a “stage”, where Stage 1 represents early layers presumed to capture general feature
information, and where Stage 5 represents late layers deemed to represent class-specific features
and localization information. Six class activation map variations (Grad-CAM,50 Grad-CAM++,51

LayerCAM,52 Score-CAM,60 Ablation-CAM,54 and Eigen-CAM55) were computed in each of the
five VGG16 stages for the DSIAC test data. Each CAM was binarized across a range of thresholds
in [0.001, 0.9] and compared to the pixel-level groundtruth. Semantic segmentation performance
for each method can be observed in Figure 7 and performance in each stage is shown in Figure 8.
Table 3 shows the mIoU at a fixed threshold of τ = 0.3, which is consistent with the literature.
While overall segmentation performance for each method was poor, there is a clear trend in the
results. Specifically, the top scoring methods in late stages were Grad-CAM and Grad-CAM++.
This might indicate that localization information in the late layers was very strong, as the model
was relying on the large gradient magnitudes (i.e. strong localization) in those layers. In early
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Table 3: DSIAC semantic segmentation performance using binarized VGG16 class activation maps
at a fixed threshold of τ = 0.3. Results are shown as the mIoU for images predicted as “positive”
bags. The best results for each stage are bolded and the second-best are underlined.

DSIAC Semantic Segmentation with Binarized CAMs
Method Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Grad-CAM50 0.084± 0.046 0.049± 0.052 0.044± 0.042 0.156± 0.078 0.274 ± 0.114
Grad-CAM++51 0.114± 0.103 0.114± 0.106 0.214± 0.138 0.376 ± 0.129 0.242± 0.135
LayerCAM52 0.078± 0.069 0.194± 0.140 0.322 ± 0.168 0.358± 0.123 0.238± 0.112
Score-CAM60 0.124 ± 0.119 0.213 ± 0.231 0.107± 0.094 0.113± 0.094 0.169± 0.120
Ablation-CAM54 0.115± 0.107 0.088± 0.083 0.098± 0.081 0.168± 0.116 0.195± 0.093
Eigen-CAM55 − − 0.048± 0.042 0.065± 0.078 0.045± 0.106

stages, however, the effects of diminishing gradients can be seen, as Grad-CAM and Grad-CAM++
have a clear drop-off in performance. Alternatively, LayerCAM, Score-CAM, and Ablation-CAM
all showed improved performance in Stages 1-3. LayerCAM utilizes spatial information to improve
early layer CAM computation, while Score-CAM and Ablation-CAM substitute backward gradient
flow for forward activation passes. These results might suggest a combination of methods taking
advantage of both forward activation flow and backward gradient passing would benefit WSSS.
Eigen-CAM was not computed in Stages 1 or 2 because of computational resource burden.

4.3.1 Feature Ranking and Selection

Class activation map informed WSSS was further explored by investigating feature selection using
CAM pseudo-labels. Following the previous CAM binarization experiments, a LayerCAM model
at Stage 4 of the trained VGG16 bag-level classifier was selected to generate pseudo-labels. Two
methods for ranking features were explored. First, independent feature ranking was performed for
each image by adaptively thresholding activation maps and corresponding LayerCAM pseudo-labels
using Otsu’s method.61 The IoU between the binarized feature map and CAM pseudo-label was used
as the scoring function. Features were sorted by average IoU performance across all training images.
The second ranking was performed by simply sorting the importance values given to each map by
Grad-CAM.50 Figure 10 shows the training mIoU performance for each ordered feature index. As
can be observed, the single top performing feature maps obtain, on average, IoU scores of 0.253
(mIoU ranking) and 0.261 (importance ranking). As expected, the feature ranking using mIoU on
thresholded activations shows monotonic decreasing performance. Alternatively, the segmentation
performance of independent features sorted by Grad-CAM importance shows much more variation.
This might suggest that instead of weighting activation maps by their total abilities to cover the
target, Grad-CAM may incrementally add activations with less IoU in order to “fill-in” missing
areas on target and to reduce redundancy, similar to boosting approaches. Thus, non-linear feature
combination may need to be considered to improve CAM computation for WSSS. Figure 11 shows
examples of input bags with their top three features selected from ranking with mIoU between
activations and CAM pseudo-labels. For the shown example, the first (importance) and second
(mIoU) activation feature maps are the same. This is indicative that the feature is important for
semantic segmentation. Qualitatively, this ranking is intuitive, as the feature map seems to queue
on high response regions of the IR input.

Post feature ranking, the effect of feature set size was explored. A logistic regression classifier was
trained K times, where the feature set began with only the fittest feature, and subsequent iterations
incrementally added the next fittest feature to the training set. In total, K = 1472 classifiers were
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Figure 7: DSIAC CAM segmentation by method. Results show mIoU versus binarization threshold.
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Figure 8: DSIAC CAM segmentation by stage. Results show mIoU versus binarization threshold.
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Figure 9: Examples of LayerCAM at various stages of a trained VGG16 network for the “target”
class. Layer 1 corresponds to CAMs computed from the initial convolutional block while Layer 5
represents CAMs from the deepest convolutional layers. Earlier layers capture fine-grained infor-
mation while later layers capture class-specific, localization information.

Figure 10: Independent segmentation performance for CAM importance ranked features (left, or-
ange) and mIoU ranked features (right,blue). The single top performing feature maps obtain, on
average, IoU scores of 0.253 (mIoU ranking) and 0.261 (importance ranking). The mIoU ranked fea-
tures show monotonic decreasing segmentation performance while the Grad-CAM ranked features
show more variation.

trained to include every feature map from the VGG16 backbone model. The activation maps in [0, 1]
were used as input features, while the binary classification labels were taken as the Otsu thresholded
LayerCAM outputs for the training bags. Each classifier was tested on the hold-out test set, and
the mIoU was computed between the predicted instance-level labels and pixel-level groundtruth.
Figure 12 shows the results for each of the two fitness functions. Results are shown only for the first
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Figure 11: Input images with top three activation maps ranked by mIoU between activations and
LayerCAM pseudo-labels (top) and Grad-CAM importance weights (bottom).

Figure 12: Segmentation performance as a function of number of training features. The solid line
shows the mean IoU on the test set and the shaded region shows one standard deviation. The CAM
importance fitness (orange) demonstrates a top mIoU of 0.352 at k = 42 features. The optimal
number of features for the mIoU fitness (blue) is k = 3, which gave an average IoU of 0.369.

k = 42 feature sets, as performance only declined with additional features. It can be observed that
the optimal number of features for the mIoU fitness is k = 3, which gave an average IoU of 0.369.
The CAM importance fitness gave an optimal mIoU of 0.352 with k = 42 features. While the CAM
importance fitness performance was on par with the CAM binarization approches for WSSS, the
feature selection approach with binarized activations slightly outperformed alternative approaches.

From the results, it can be inferred that selecting feature maps from a trained bag-level classifier
may be a viable option for learning instance-level classification features. The implemented feature
selection approach benefits from combining both early and late network features. Additionally,
feature selection and instance classification are limited by the quality of the CAM pseudo-labels.
CAM computation for WSSS could likely be improved if early and late features were fused through
intelligent, nonlinear combination.
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5. CONCLUSION

This work explored the feasibility of using class activation maps as a mechanism for extracting
instance-level classification information from a bag-level inference network. Specifically, six common
class activation map approaches in the literature were evaluated on their abilities to perform WSSS
by thresholding over a range of confidence values. Pseudo-labels were constructed from a CAM
approach, and were used to train an auxiliary instance-level classification model. From experimental
results, it was concluded that class activation map approaches can provide adequate localization
ability for methods such as seeding, but need further improvement to be utilized for WSSS in
infrared imagery, directly. Additionally, it was shown that a set of activation feature maps can be
extracted from the bag-level classification network to be used in simpler, auxiliary, instance-level
classifiers. Feature selection from CAM pseudo-labels has the ability to combine both early and late
features, which can improve WSSS performance in some cases. The methods explored in this paper
were baseline approaches to explore the long-investigated problem of instance-level classification
under the MIL framework. Both approaches would benefit from improved CAMs. Future work will
explore CAM generation which combines features from both early and later stages of a CNN to
improve not only target localization, but also instance-level classification.
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lem with axis-parallel rectangles,” Artificial Intelligence 89(1), 31 – 71 (1997).

[29] Ilse, M., Tomczak, J. M., and Welling, M., “Attention-based deep multiple instance learning,”
CoRR abs/1802.04712 (2018).

[30] Du, X. and Zare, A., “Multiple instance choquet integral classifier fusion and regression for
remote sensing applications,” IEEE Transactions on Geoscience and Remote Sensing 57, 2741–
2753 (May 2019).

[31] Du, X. and Zare, A., “Multi-resolution multi-modal sensor fusion for remote sensing data with
label uncertainty,” CoRR abs/1805.00930 (2018).

[32] Zare, A., Cook, M., Alvey, B., and Ho, D. K., “Multiple instance dictionary learning for
subsurface object detection using handheld emi,” in [Detection and Sensing of Mines, Explosive
Objects, and Obscured Targets XX, 94540G ], Proc. SPIE (May 2015).

[33] McCurley, C. H., Bocinsky, J., and Zare, A., “Comparison of hand-held wemi target detection
algorithms,” in [Detection and Sensing of Mines, Explosive Objects, and Obscured Targets
XXIV, 110120U ], Proc.SPIE 11012 (May 2019).

[34] Meerdink, S., Bocinsky, J., Zare, A., Kroeger, N., McCurley, C. H., Shats, D., and Gader, P.,
“Multi-target multiple instance learning for hyperspectral target detection,” IEEE Transaction
on Geoscience and Remote Sensing (TGRS) (2021).
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