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Abstract— Feature representation is an important aspect of
remote-sensing-based image classification. While deep convolu-
tional neural networks (DCNNs) are able to effectively amal-
gamate information, large numbers of parameters often make
learned features inscrutable and difficult to transfer to alter-
native models. In order to better represent statistical texture
information for remote-sensing image classification, in this letter,
we investigate performing joint dimensionality reduction (DR)
and classification using a novel histogram neural network.
Motivated by a popular DR approach, t-distributed stochastic
neighbor embedding (t-SNE), our proposed method incorporates
a classification loss computed on samples in a low-dimensional
embedding space. We compare the learned sample embeddings
against coordinates found by t-SNE in terms of classification
accuracy and qualitative assessment. We also explore the use
of various divergence measures in the t-SNE objective. The
proposed method has several advantages such as readily embed-
ding out-of-sample points and reducing feature dimensionality
while retaining class discriminability. Our results show that
the proposed approach maintains and/or improves classification
performance and reveals characteristics of features produced by
neural networks that may be helpful for other applications.

Index Terms— Convolutional neural networks, dimensionality
reduction (DR), t-distributed stochastic neighbor embedding
(t-SNE).

I. INTRODUCTION

RECENTLY, deep convolutional neural network (DCNN)-
based approaches have shown remarkable performance

on remote-sensing tasks [1]. State-of-the-art image classifi-
cation networks often contain thousands or even millions of
parameters that need to be learned during training. While
it has been argued in the literature that high-dimensionality
(data, parameterization, model complexity) is more amenable
for classification [2], [3], methods taking advantage of
high-dimensionality are often inscrutable. One approach for
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handling the nuances associated with high-dimensionality is
simply to reduce the dimensionality of the data/model.

Dimensionality reduction (DR) has proved to be a critical
tool in many remote-sensing applications, such as hyperspec-
tral land-cover classification [4], [5], multi-modality sensor
fusion [6], co-registration and alignment [7], redundancy
removal, memory usage minimization, and reduction of the
effects of the Curse of Dimensionality [8]. The goal of DR can
be posed as discovering intrinsic, lower-dimensional features
from the data which meet an overarching objective, such
as preserving variance, finding compressed representations of
data, maintaining global or local structure, or promoting
class discriminability in the embedding space [8]–[10]. Most
studies perform classification or regression after applying
unsupervised DR. However, it has been shown that there are
advantages to learning the low-dimensional representations
and classification/regression models simultaneously [11], [12].
Specific to classification, the goal of DR is to discover embed-
ding functions that take data from the input feature space
and transform it into a lower-dimensional coordinate system
or latent space. Ideally, the low-dimensional features capture
“useful” properties of the data while enforcing constraints such
as topological ordering and class separability [13].

The representation of data is a critical factor in determining
machine learning classification performance [9]. For images,
one can generally represent information through color, shape,
and texture features [14]. As shown in the literature [15],
texture features often serve as the most powerful descriptor
of the three. As currently constructed, DCNNs cannot directly
model statistical texture information without the use of extra
layers and parameters. To capture statistical texture features
in DCNNs, histogram layer networks [16] were introduced
to characterize the distribution of features in the model.
We hypothesize that incorporating statistical texture features
into our proposed approach will assist in providing meaningful
representations of the data for classification.

Based on these motivations, we introduce a neural clas-
sification approach that inherently learns compressed feature
representations optimized for class discriminability. The con-
tributions of this work are summarized as the following.

1) We propose a neural classification scheme that finds
discriminative, low-dimensional representations of the
input data. The network learns from a t-distributed
stochastic neighbor embedding (t-SNE)-based objective,
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Fig. 1. Architecture for the proposed DRENs.

yet outperforms the data representations found by clas-
sical t-SNE in terms of classification accuracy.

2) The proposed method is constructed from a histogram
layer network backbone which extracts highly descrip-
tive texture features.

3) The proposed approach can readily embed out-of-sample
points, allowing it to be applied universally to other
image classification datasets.

II. METHODS

A. Proposed Approach

In order to jointly perform classification and DR, our
objective function is comprised of two terms: classification
loss, Lclass, and a divergence measure, Ldiv

L total = (1 − λ)Lclass
(
Ŷ, Y

) + λLdiv(P, Q) (1)

where P ∈ R
N×N is the joint probability distribution on the

high-dimensional input features X ∈ R
N×D for N samples in

a mini-batch, Q ∈ R
N×N is the joint probability distribution

on the lower-dimensional embeddings Z ∈ R
N×d , Ŷ ∈ R

N×C

are the sample predictions for C classes, and Y ∈ R
N×C are

the true class labels. We add a weight, λ, to leverage the
contribution of each term to the overall objective. We define
Lclass as the popular cross-entropy loss

Lclass
(
Ŷ, Y

) = − 1

N

N∑

i=1

C∑

c=1

yic log ŷic. (2)

For t-SNE, Kullback–Leibler (KL) divergence is typically
used to minimize the divergence between the higher- and
lower-dimensional joint probability distributions

Ldiv(P, Q) =
N∑

i=1

N∑

j=1

pi j log
pi j

qi j
. (3)

Following the standard t-SNE [17] implementation, we used
a normalized radial basis kernel and Student’s t-distribution
with a single degree of freedom to estimate the neighbor
probability matrices P and Q in the high- and low-dimensional
feature spaces, respectively. Our approach is agnostic to the
selection of a divergence measure. Hence, we used other
divergence measures such as Wassertein-1 (i.e., earth mover’s
distance) and Renyi’s divergence with α = 0.5. There was
not a statistically significant difference in the classification

performance of our model. Therefore, the results presented
in this work are representative of using KL divergence.

B. Implementation

For our divergence regulated encoder network (DREN),
we used two pretrained models as the backbones, ResNet18
and ResNet50 for Textures under varying Illumination, Pose
and Scale (KTH-TIPS-2b) [18] and Describable Texture
Dataset (DTD) [19], respectively. We added a histogram layer
after the last convolutional layer for each of the pretrained
models. From these models, we extracted the high-dimensional
feature vectors, X, for each sample. For the baseline and
histogram models used for KTH-TIPS-2b and DTD, D was
512, 1024, 2048, and 4096, respectively. Our encoder was
composed of four fully connected layers of size 128, 64, 32,
and d . We used ReLU activation functions for the first three
layers and passed the d-D embedding to a softmax output layer
for classification.

The embeddings, Z, were used to compute Ldiv and
to update the weights of the model via backpropagation.
To create a fair comparison to t-SNE applied to the high-
dimensional features, we only updated the lower-dimensional
embeddings. Therefore, P was removed from the computa-
tional graph such that only the gradient information from
Q was used. The overall structure of DREN is shown in
Fig. 1 and the code for our work is publicly available:
https://github.com/GatorSense/DREN.

III. EXPERIMENTAL SETUP

Our experiments consisted of two main components:
encoder performance and comparisons to t-SNE. For our
encoder experiments, we investigated the selection of hyperpa-
rameters λ and d for the proposed DREN models. We used two
texture/material datasets: DTD and KTH-TIPS-2b. DTD [19]
is a collection of textural images annotated with human-centric
attributes. The texture database consists of 5640 images,
organized according to 47 categories. The KTH-TIPS-2b [18]
dataset is defined by images of multiple materials under
varying pose, scale, and illumination. The database contains
images of 11 distinct textures. The typical train/test splits for
DTD (train on 80 images per class and test on 40 images
per class) and KTH-TIPS-2b (train on three samples, test on
one sample) were used for our experiments [15]. We held
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TABLE I

ENCODER EXPERIMENTS PERFORMANCE OF THE DIFFERENT VARIATIONS OF DREN FOR KTH-TIPS-2B. THE BEST AVERAGE RESULT FOR EACH
MODEL d , AND λ IS BOLDED. THE PERFORMANCE AND DIMENSIONALITY WITHOUT AN ENCODER ARE SHOWN IN THE HEADINGS. FOR CLARITY,

THE STANDARD DEVIATIONS ARE NOT SHOWN

10% of the training data for validation and applied each
model to the holdout test set. We performed four and ten
runs of data splits for KTH-TIPS-2b and DTD, respectively.
The average classification accuracy is reported across the
different folds. We followed a similar training procedure and
data augmentation from previous works [16], except Adam
optimization was used. We also only updated newly added
layers (i.e., histogram layers, encoder, output layer) and kept
the pretrained weights fixed. The number of bins used in all
histogram models was 16.

The weight in the objective term, λ, was varied from
0 to 1 in steps of 0.1. The embedding dimension, d , was
set to 2, 3, 4, 8, and 16. After our encoder experiments,
we compared the embeddings learned by DREN to t-SNE.
In order to embed test samples for t-SNE, we used an approach
similar to Locally Linear Embedding [20], which assumes
that a sample can be represented as a linear combination of
its nearest neighbors. Thus, low-dimensional coordinates of
unseen test points were found as constrained combinations
of their nearest neighbors in the training set. We evaluated
each embedding 1) qualitatively and 2) quantitatively by
reporting the classification accuracy of a k-nearest neighbors
(K -NN) classifier on the test data (K = 3). Lastly, we further
validated the approach by investigating various convolutional
neural networks (CNN) backbone architectures. Additionally,
we also show the effectiveness of the approach on a remote-
sensing dataset, Plant Root Minirhizotron Imagery (PRMI)
[21]. We performed species classification on a subset of

the data for a total of 4144 images and four classes. The
published training, validation, and test splits were used across
five experimental runs.

IV. RESULTS AND DISCUSSION

A. Encoder Experiments

For the two hyperparameters λ and d , the performance
of the DREN models depends more on the selection of the
embedding dimension. Ideally, as the dimensionality of the
feature space becomes larger, inter-class separability should
increase and intra-class variations should decrease, leading
to improved performance (as shown in our experiments for
the DREN models). However, our DREN models achieved

statistically comparable performance to the baseline models
without an encoder at significantly lower dimensions (except
for DREN with ResNet50 for DTD). Our method is also
stable to the selection of λ except for when only the Ldiv is
considered (λ = 1). In this case, the model is an unsupervised
approach and will only learn embeddings that minimize the
divergence between higher and lower dimensions. In our
implementation, the error was not backpropagated through the
output layer once λ = 1. In this instance, the output layer will
not be updated, leading to poor classification performance. We
also analyze the convergence of the proposed method across
the various hyperparameters in the supplemental material.

In Table I, the performance of the DREN models with and
without the histogram layers for KTH-TIPS-2b was compa-
rable. KTH-TIPS-2b primarily consisted of images collected
in a controlled environment [15]. As a result, the local,
texture features extracted by the histogram layers may not
add as much information for the classification. However, the
DREN models with the histogram layers performed better on
DTD across the different combinations of hyperparameters
as shown in Table II. DTD contained images collected “in-
the-wild” and also has more classes (47) than KTH-TIPS-2b
(11). The embeddings learned by the DREN histogram models
retained useful information from the texture features to achieve
comparable performance to the base CNN models.

B. t-SNE Comparisons

In Table III, the test performance for the K -NN classi-
fiers showed the utility of the DREN embeddings for not
only visualization, but also classification. Our DREN models
also have an advantage over t-SNE in that new images can
be embedded without a separate out-of-sample approach.
In Fig. 2, the t-SNE embedding of the test points is not as
visually compact and separable as the DREN models. The
test sample embeddings produced from the DREN models
also seem to have “angular” feature distributions. As noted in
other works [22], models trained using cross-entropy appear to
learn these unique, intrinsic feature coordinates in comparison
to the t-SNE embeddings that are learned by only using KL
divergence. For the DREN histogram models, the “angular”
embeddings may also be produced as a result of normalization
as the features are also centered around 0. The features
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TABLE II

ENCODER EXPERIMENTS PERFORMANCE OF THE DIFFERENT VARIATIONS OF DREN FOR DTD. THE BEST AVERAGE RESULT FOR EACH MODEL d ,
AND λ IS BOLDED. THE PERFORMANCE AND DIMENSIONALITY WITHOUT AN ENCODER ARE SHOWN IN THE HEADINGS. FOR CLARITY, THE

STANDARD DEVIATIONS ARE NOT SHOWN

Fig. 2. Two-dimensional embeddings of test images from t-SNE out-of-sample approach and different variations of DREN for (a)–(c) KTH-TIPS-2b and
(d)–(f) DTD. The colors represent different classes from each dataset. In the 2-D space, the HistRes features are more separable according to an angular
measure and are also much more compact, that is, each class mostly varies across a single principal vector, and the principal vectors are well separated by
an angular margin.

TABLE III

TEST CLASSIFICATION PERFORMANCE USING K -NN “TRAINED” ON EMBEDDINGS FROM T-SNE AND DREN MODELS. FOR THE DREN MODELS, THE

WEIGHT CORRESPONDING TO THE BEST AVERAGE PERFORMANCE IS REPORTED. THE BEST AVERAGE RESULT IS BOLDED

TABLE IV

TEST CLASSIFICATION PERFORMANCE WITH DIFFERENT BACKBONE ARCHITECTURES FOR THE DREN MODELS. FOR THE DREN MODELS (ENCODER

USED), WE USE EQUAL WEIGHTING FOR EACH TERM IN THE OBJECTIVE (λ = 0.5) AND THE EMBEDDING DIMENSION IS d = 16. THE BEST

AVERAGE RESULT FOR EACH MODEL IS BOLDED. FOR CLARITY, THE STANDARD DEVIATIONS ARE NOT SHOWN. THE DIMENSIONALITIES

(D) OF THE BASE MODELS ARE SHOWN IN THE HEADINGS

captured by the histogram layer binning function are naturally
between 0 and 1, while the features from the global average
pooling layer are followed by batch normalization [16].

C. Backbone Experiments

The proposed DREN model improved the average test
classification accuracy across various backbone architectures

for the baseline and histogram layer models as shown in
Table IV. We also observe that the features extracted from
the histogram layer also led to the best performance when
coupled with the divergence regulation term for the KTH and
DTD datasets. The structural changes of the roots are the
most prominent features in the PRMI dataset, so the statistical
information of the histogram-based models did not impact
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performance much in comparison to the base model. The
best model across all datasets was the DenseNet model. This
model has a unique feature to encourage feature reuse [23]
and this was more effective with the divergence regulation of
the DREN model. As shown from the experiments, the DREN
model is also fairly robust to the CNN backbone architecture.

V. CONCLUSION

In this work, we presented DREN models for joint DR and
classification. The proposed approach learns discriminative
features at lower dimensions that can be used for different
tasks. The approach has several advantages and is a general
framework that can use various classification/divergence mea-
sures and deep learning models.
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